Optimality Bounds and Optimization for Image Partitioning

Jan Lellmann, Frank Lenzen, Christoph Schnörr

Image and Pattern Analysis Group
Universität Heidelberg

Efficient Algorithms for Global Optimisation Methods
Dagstuhl, November 21, 2011
Motivation – Problem

- Labeling problem:

- Partition image domain Ω into L regions
- *Discrete* decision at each point in *continuous* domain Ω

Variational Approach:

$$\min_{\ell} \int_{\Omega} s(\ell(x), x) dx + J(\ell)$$

- Local data fidelity
- Regularizer

$\ell(x) = 2$

$\{1, \ldots, L\}$
Motivation – Multiclass Labeling

- **Applications:** Denoising, segmentation, 3D reconstruction, depth from stereo, inpainting, photo montage, optical flow,...

- Spatially continuous formulation avoids metricalation artifacts:
Model – Multi-Class Labeling

▶ Multi-class relaxation: [Lie et al. 06, Zach et al. 08, Lellmann et al. 09, Pock et al. 09]

▶ Embed labels into \mathbb{R}^L as $\mathcal{E} := \{e^1, \ldots, e^L\}$, relax to the unit simplex:

$$
\Delta_L := \{x \in \mathbb{R}^L | x \geq 0, \sum_i x_i = 1\} = \text{conv } \mathcal{E},
$$

$$
\min_{u \in \text{BV}(\Omega, \Delta_L)} f(u), \quad f(u) := \int_{\Omega} \langle u(x), s(x) \rangle dx + \int_{\Omega} \Psi(Du)
$$

▶ Advantages: No explicit parametrization, rotation invariance, convex
Model – Envelope Relaxation

- \(J(\ell) \): Weight boundary length by interaction potential \(d(i,j) \)

- \(J(u) \) implicitly defined as local envelope for given \(d \)

\[J(u) := \sup_{v \in \mathcal{D}} \int_{\Omega} \langle Du, v \rangle = \int_{\Omega} \underbrace{\sigma_{\mathcal{D}_{\text{loc}}}(Du)}_{\Psi(Du)} \]

\[\mathcal{D} := \{ v \in (C^\infty_c)^{d \times L} | v(x) \in \mathcal{D}_{\text{loc}} \ \forall x \in \Omega \} , \]

\[\mathcal{D}_{\text{loc}} := \{ (v^1, \ldots, v^L) \in \mathbb{R}^{d \times L} | \| v^i - v^j \| \leq d(i,j) \ \forall i,j \} . \]
Fractional solutions may occur:

Goal: Find rounding scheme $u^* \mapsto \bar{u}^* : \Omega \to \{e^1, \ldots, e^L\}$ such that

$$f(\bar{u}^*) \leq Cf(u^*_E).$$

for some $C \geq 1$.

J. Lellmann – Optimality Bounds and Optimization for Image Partitioning
Two-class case: Generalized coarea formula [Strang83, ChanEsedogluNikolova06, Zach et al. 09, Olsson et al. 09]

\[f(u) = \int_0^1 f(\bar{u}_\alpha) d\alpha, \quad \bar{u}_\alpha := \begin{cases} e^1, & u_1(x) > \alpha, \\ e^2, & u_1(x) \leq \alpha. \end{cases} \]

Also: Choquet integral, Lovász extension, levelable function,…

Consequence: \(C = 1 \), global integral minimizer for a.e. \(\alpha \):

Multi-class generalization (approximate generalized coarea formula):

\[Cf(u) \geq \int_{\Gamma} f(\bar{u}_\gamma) d\mu(\gamma) = \mathbb{E}_\gamma f(\bar{u}_\gamma) \]

Parameter space: sequences \(\gamma \in \Gamma := (\{1, \ldots, L\} \times [0, 1])^N \)
Optimality – Example
Theorem (Optimality \cite{LellmannLenzenSchnoerr2011})

Let \(u \in \text{BV}(\Omega, \Delta_L) \), \(s \in L^\infty(\Omega)^L \), \(s \geq 0 \), \(d \) metric. Then

\[
E f(\bar{u}) \leq 2 \frac{\max_{i \neq j} d(i, j)}{\min_{i \neq j} d(i, j)} f(u) \quad \text{and} \quad E f(\bar{u}^*) \leq 2 \frac{\max_{i \neq j} d(i, j)}{\min_{i \neq j} d(i, j)} f(u^*_c).
\]

- Provides “approximate” generalized coarea formula
- Compatible with bounds for finite-dimensional multiway cut, \(\alpha \)-expansion, LP relaxation \cite{Dahlhaus et al. 94, KleinbergTardos 99, Boykov et al. 01, KomodakisTziritas 07}
- Formulated in BV, independent of discretization, true \textit{a priori} bound
Reducing Metrics

- Tight regularizer, but:

\[
\mathcal{D}_{\text{loc}} := \{(v^1, \ldots, v^L) \in \mathbb{R}^{d \times L} \mid \|v^i - v^j\| \leq d(i, j) \ \forall i, j\}.
\]

- Many constraints: \(O(L^2)\)

- Assume there is \((i, j, k)\) such that \(d(i, k) \geq d(i, j) + d(j, k)\). Then

\[
\|v^i - v^k\| \leq \|v^i - v^j\| + \|v^j - v^k\| \leq d(i, j) + d(j, k) \leq d(i, k).
\]

\(\Rightarrow\) Removing constraint for \((i, k)\) does not change \(\mathcal{D}_{\text{loc}}\).

- How to continue?
Reducing Metrics

- Can show:
 - No need for sequential removal
 - Remaining set of constraints is unique
 - Does not change dual constraint set \mathcal{D}_{loc}/regularizer ψ

Algorithm 1 (Reducing Metrics)

- For all $(i, j, k) \in \{1, \ldots, L\}^3$:
 - If $d(i, k) \geq d(i, j) + d(j, k)$: remove constraint $\|v^i - v^k\| \leq d(i, k)$
Reducing Metrics – Uniform

- **Uniform (Potts) metric:** \(d(i, j) = 1_{i \neq j} \)

- No reduction possible
Reducing Metrics – Uniform and Linear

- **Linear metric:** \(d(i, j) = |i - j|\)

- **Full reduction:** \(O(n^2) \rightarrow O(n)\)
Reducing Metrics – Trees

- Tree metric: $d(i, j) = \text{shortest_path}(T, i, j)$

<table>
<thead>
<tr>
<th>original</th>
<th>reduced</th>
<th>completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2x2 matrix]</td>
<td>[2x2 matrix]</td>
<td>[2x2 matrix]</td>
</tr>
</tbody>
</table>

- Full reduction: $O(n^2) \rightarrow O(n)$
Reducing Metrics – Cyclic

- General graph: \(d(i, j) = \text{shortest_path}(G, i, j) \)
- Continuous analogue: \(\text{TV}_{S^1} \) for angular/orientation data

[StrekalovskiyCremers2011]

- Full reduction: \(O(n^2) \rightarrow O(n) \)
Reducing Metrics – Multiple Components

- Labels quantize vector-valued quantities, e.g. optical flow
- n quantization steps per component
 $\Rightarrow n^2$ labels, $O(n^4)$ constraints!
- Separable metric (linear):
 $$d(((i_1, i_2), (j_1, j_2)) = |i_1 - j_1| + |i_2 - j_2|$$
- Possible: two indicator functions
 - Nonconvex dataterm, needs relaxation \Rightarrow less tight [GoldlueckeCremers2010]
 - or additional dual variables [StrekalovskiyGoldlueckeCremers2011]
Reducing Metrics – Multiple Components

- **Separable metric (linear):**

\[d((i_1, i_2), (j_1, j_2)) = |i_1 - j_1| + |i_2 - j_2| \]

- **Full reduction:** \(O(n^4) \rightarrow O(n^2) \) (\(n^2 \) labels)
Reducing Metrics – Multiple Components

- Separable metric (*uniform*/Potts):

\[d((i_1, i_2), (j_1, j_2)) = 1_{i_1 \neq j_1} + 1_{i_2 \neq j_2} \]

- Reduction: \(O(n^4) \rightarrow O(n^3) \) (still \(n^2 \) labels)
Setting:
- Tight convex relaxation of multiclass image labeling

Bounds:
- \textit{Probabilistic a priori} bound
- Approximate generalized coarea formula
- Compatible with finite-dimensional results

Reducing Metrics:
- Automatically remove redundant constraints
- Reduces complexity for widely used metrics
- Easy integration into other approaches
Optimality Bounds and Optimization for Image Partitioning

Jan Lellmann, Frank Lenzen, Christoph Schnörr

Image and Pattern Analysis Group
Universität Heidelberg

Efficient Algorithms for Global Optimisation Methods
Dagstuhl, November 21, 2011
Optimality – Termination

Theorem (Termination)

Let $u \in BV(\Omega, \Delta_L)$. Then (almost surely) Alg. 1 generates a sequence that becomes stationary in some $\bar{u} \in BV(\Omega, \mathcal{E})$.

- Result is in BV
- Independent of data term
Experiments – Iterations
Experiments I

[Images of different color partitions and images]
Experiments II
Experiments – Results

<table>
<thead>
<tr>
<th>problem</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td># points</td>
<td>76800</td>
<td>14400</td>
<td>14400</td>
<td>129240</td>
<td>76800</td>
<td>86400</td>
<td>86400</td>
<td>76800</td>
<td>86400</td>
<td>110592</td>
</tr>
<tr>
<td># labels</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>mean # iter.</td>
<td>7.27</td>
<td>7.9</td>
<td>8.05</td>
<td>10.79</td>
<td>31.85</td>
<td>49.1</td>
<td>49.4</td>
<td>49.4</td>
<td>49.7</td>
<td>66.1</td>
</tr>
<tr>
<td>a priori ε</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
<td>2.6332</td>
</tr>
<tr>
<td>a posteriori</td>
<td></td>
</tr>
<tr>
<td>- first-max</td>
<td>0.0007</td>
<td>0.0231</td>
<td>0.2360</td>
<td>0.0030</td>
<td>0.0099</td>
<td>0.0102</td>
<td>0.0090</td>
<td>0.0101</td>
<td>0.0183</td>
<td>0.0209</td>
</tr>
<tr>
<td>- prob. best</td>
<td>0.0010</td>
<td>0.0314</td>
<td>0.1073</td>
<td>0.0045</td>
<td>0.0177</td>
<td>0.0195</td>
<td>0.0174</td>
<td>0.0219</td>
<td>0.0309</td>
<td>0.0487</td>
</tr>
<tr>
<td>- prob. mean</td>
<td>0.0007</td>
<td>0.0231</td>
<td>0.0547</td>
<td>0.0029</td>
<td>0.0138</td>
<td>0.0152</td>
<td>0.0134</td>
<td>0.0155</td>
<td>0.0247</td>
<td>0.0292</td>
</tr>
</tbody>
</table>
Algorithm 1 (Randomized Rounding in BV)

1. **Input:** \(u^0 \in \text{BV}(\Omega, \Delta_L) \)
2. **For** \(k = 1, 2, \ldots \)
3. Sample \(\gamma^k = (i^k, \alpha^k) \in \{1, \ldots, L\} \times [0, 1] \) uniformly
4. \(u^k \leftarrow e^{i^k} \mathbb{1}_{\{u_{ik}^{k-1} > \alpha^k\}} + u^{k-1} \mathbb{1}_{\{u_{ik}^{k-1} \leq \alpha^k\}} \)
5. **Output:** Limit \(\bar{u} \) of \((u^k) \)

- Parameter space: \(\text{sequences} \ \gamma \in \Gamma := (\{1, \ldots, L\} \times [0, 1])^\mathbb{N} \)
Definition

For some sequence \((\gamma^k)\), if \((u^k_\gamma)\) becomes stationary at some \(u^k_\gamma' \in \mathbb{N}\), denote output \(\bar{u}_\gamma := u^k_\gamma'\). For some functional \(f : BV(\Omega)^L \to \mathbb{R}\), define

\[
\begin{align*}
 f(\bar{u}_\gamma) : \Gamma^\mathbb{N} &\to \mathbb{R} \cup \{+\infty\} \\
 \gamma \in \Gamma^\mathbb{N} &\mapsto f(\bar{u}_\gamma) := \begin{cases}
 f(u^k_\gamma'), & (u^k_\gamma) \text{ stationary at } u^k_\gamma' \in BV(\Omega)^L, \\
 +\infty, & \text{otherwise.}
 \end{cases}
\end{align*}
\]

- Can show: \(\mathbb{P}_\gamma(f(\bar{u}_\gamma) < \infty) = 1\).
 - Generates “output” in finite time almost surely
 - Output is in \(BV(\Omega)^L\) almost surely
Reducing Metrics – Uniform and Linear

- **Truncated linear metric:** \(d(i, j) = \min\{3, |i - j|\} \)

- Half the number of constraints