Overview
Continuous Multi-Class Image Labeling
Relaxation yields linear data term
Use weighted variant of total variation on vector fields as regularizer
Allows for non-trivial interaction potentials, can be optimized quickly
Models Euclidean distance interaction potentials exactly, non-Euclidean distances can be approximated
Globally optimized using Nesterov’s first-order approach with explicit optimality bounds

Continuous Problem Formulation
Problem
For each pixel \(x \in \Omega \subseteq \mathbb{R}^2\), find a class label \(\ell(x) \in \{1, \ldots, L\}\) according to local data fidelity and regularization term
\[J = \text{Combinatorial problem.} \]

Relaxation
Identify the \(s\)-th label with \(\ell' \) and relax to the unit simplex in \(\mathbb{R}^L\), find
\[\min_{u \in \mathbb{R}^L} \int_{\Omega} \langle u(x), x(x) \rangle dx + J(u), \]
where \(C = \{ u : \Omega \rightarrow \mathbb{R} \mid u(x) \geq 0, \sum_{\ell=1}^{L} u(x) = 1 \} \) and \(J \) penalizes label changes.
\(\Rightarrow \) Convex problem for any data term. Formulating \(J \) means trading off generality vs. simplicity of computation.

Total Variation Based Regularizer
Approach
Fix an interface potential \(d : \{1, \ldots, L\} \rightarrow \mathbb{R} \) and require regularization according to boundary length with weight depending on labels \(i \) and \(j \) of adjoining regions,
\[J(i' \downarrow s + i' 1_{j \downarrow s}) = d(i, j) \text{Per}(S) \]
for any set \(S \subset \Omega \) with finite perimeter. If \(J \) convex, positively homogeneous and \(J(u) = 0 \) for constant \(u \), then \(d \) must be a metric.
Euclidean Distances
Idea: Use linear modification of total variation on vectors,
\[J(u) = \text{TV}(u) = \int_{\Omega} ||D(u)||_F dx, \]
here \(||D(\cdot)||_F \) Frobenius norm of the Jacobian and \(A \in \mathbb{R}^{k \times d} \). Then
\[\text{TV}(i' \downarrow s + i' 1_{j \downarrow s}) = ||u' - u||_F \text{Per}(S). \]
If \(d(i, j) = ||a' - a|| \), i.e. \(a \) is an Euclidean distance, \(J \) is exact for hard labeling.

Approximation of Non-Euclidean Distances
In case \(d \) is non-Euclidean, e.g. \(d(i, j) = \min \{1, |i - j|\} \): Set \(D_h = d(i, j)^2 \) and compute Euclidean approximation by minimizing
\[||E - D_h||_F^2 \]
over all Euclidean distance matrices \(E \) by solving a convex semidefinite program. Example: truncated linear distance, absolute error bound \(E_E = 0.145: \)
\[
\begin{pmatrix}
0 & 1 & 2 & 1 & 2 & 0
1 & 0 & 1 & 2 & 0 & 1
2 & 1 & 0 & 1 & 2 & 0
1 & 2 & 0 & 1 & 2 & 0
2 & 0 & 1 & 2 & 0 & 1
1 & 2 & 0 & 1 & 2 & 0
\end{pmatrix}
\]

Discretized Problem
Use forward differences and support function representation of discrete total variation to get a bilinear saddle point problem:
\[\min_{u \in C} \langle u, s \rangle + \langle (L(x), v) - (b, v) \rangle, \]
where \(L \) discretization of gradient and
\[C = \{ u \in \mathbb{R}^n | u_i \in \Delta_i, i = 1, \ldots, n \}, \]
\[D = \{ p \in \mathbb{R}^p \mid ||p||_2 \leq 1 \} \subseteq \mathbb{R}^{n \times n}. \]
Existence and strong duality follow from boundedness of \(C, D \). Projections onto \(C, D \) can be computed exactly in a finite number of steps.

Optimization
Solve non-smooth problem using Nesterov’s approach [1]
First-order method: exploit sparsity
Combines controlled smoothing with accumulated gradients
Requires only evaluations of \(L \) and projections onto \(C, D \)
\(O(1/n) \) convergence, compared to \(O(1/\sqrt{n}) \) for subgradient methods
Explicit suboptimality bound for given number of iterations, \(O(1/n \sqrt{T \langle \Omega \}}) \) to find \(\varepsilon \)-optimal solution
• Fully automatic, parameter-free

Experiments
Figure: Convexity for stereo disparity estimation with non-Euclidean distance and 16 disparities:
Objective vs. number of iterations,
Input, proposed method with varying distance: Input, proposed method with non-binary solution; after binarization the result is in accordance with the expected solution.
Figure: Simultaneous segmentation and background reconstruction: Noisy image; background and foreground reconstructed using a non-uniform distance.

References
Smooth minimization of non-smooth functions.
A convex approach for computing minimal partitions.

Algorithm 1 Convex Multi-Class Labeling
\[\begin{align*}
\text{Input:} & \quad s, C, x, F, a, b, D, \varepsilon, \delta, T, N \in \mathbb{N}. \\
\text{Output:} & \quad u \in \mathbb{R}^n, v \in \mathbb{R}^m, \pi \in \mathbb{R}^m. \\
\text{Let} & \quad u = \frac{a}{\varepsilon}, v = \frac{b}{\varepsilon}, \pi = D, \delta. \\
\text{Set} & \quad G = \mathbb{R}^n = \mathbb{R}^m = 0. \\
\text{for} & \quad k = 0, \ldots, N \text{ do} \\
& \quad V = V + \frac{1}{k+1} (G(x)^{\delta} - \delta x) \\
& \quad u = u - \frac{1}{k+1} (\nabla x^T V) \\
& \quad v = v - \frac{1}{k+1} (\nabla x^T V) \\
& \quad (x, D) = \frac{1}{k+1} (x^T + \varepsilon^T) + \frac{1}{k+1} (\frac{1}{k+1} D^T + \pi^T) \\
\text{end for}
\end{align*} \]