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Abstract

Inferring scene geometry from a sequence of camera images is one of the central
problems in computer vision. While the overwhelming majority of related research
focuses on diffuse surface models, there are cases when this is not a viable assumption:
in many industrial applications, one has to deal with metal or coated surfaces exhibiting
a strong specular behavior. We propose a novel and generalized constrained gradient
descent method to determine the shape of a purely specular object from the reflection
of a calibrated scene and additional data required to find a unique solution. This data
is exemplarily provided by optical flow measurements obtained by small scale motion
of the specular object. We present a general forward model to predict the optical flow
of specular surfaces, covering rigid body motion as well as elastic deformation, and
allowing a characterization of problematic points. We demonstrate the applicability of
our method by numerical experiments.

Keywords: Specular surfaces, deflectometry, Shape from Shading, level sets, optical
flow, constrained gradient descent.

1 Introduction and previous work

We consider the problem of reconstructing a free-form mirror surface by observing the reflected
image of a calibrated scene. This method is known as Shape from Specular Reflection or
deflectometry, see [Bon06] for a comprehensive introduction. Deflectometry is widely used
because it allows to detect small irregularities of the surface under inspection. Real-world
applications include high resolution scanning of optical lenses and industrial quality control of
coated components [Kam04]. However, as with classical camera-based scene reconstruction, a
single image generally does not suffice to fully determine the surface structure.

Current literature contains some suggestions how to overcome the ambiguity. Solem et al.
investigate the problem in a variational setting, cf. [SAH04]. Assuming a set of surface points
is known, they propose an iterative algorithm to minimize an energy functional consisting
of surface normal and point constraints. Kickingereder et al. [KD04] and Bonfort [BS03]
use stereo vision to uniquely recover the surface. Some approaches based on a local surface
representation have also been discussed: Savarese, Chen, and Perona [SCP05] use a special
pattern to find a set of surface patches by locally neglecting higher-order surface properties.
In [BWB06], the Lambertian behavior of a certain class of surfaces is employed. The latter
approach is closely connected to a research area known as Shape from Shading [Hor70, PCF].
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Figure 1: Basic setup. The scene L is reflected in the specular surface S and observed by the camera
in the origin.

In an early predecessor of our work, Oren and Nayar [ON95] investigate an abstract setting
where only the camera is moving. They do not rely on the classical monocular stereo approach
but use a differential multiview method to derive a family of possible surface curves. To our
knowledge, the first authors incorporating optical flow measurements were Roth and Black
[RB06]. Their model requires a large distance between mirror and reflected scene, leaving room
for a more realistic small-scale generalization. This will be one of our main contributions.

This paper is outlined as follows: in the following section, we will state the problem,
provide some necessary background in level set theory, and finally show how to formulate the
reconstruction problem as a constrained optimization problem. In Section 3, we will then
derive the governing equations of specular flow. We will see that an flow vector field fails
to be well-defined under certain circumstances. Our model provides for the characterization
of such special points. In Section 4, we propose a gradient descent method to solve the
general optimization problem of reconstructing the shape of an unknown specular surface
in combination with optical flow measurements. Our numerical procedure is sketched and
experimental results are presented to underline the practicability of our method.

2 Problem statement

2.1 Notation and basic problem

We frequently use the Euclidean scalar product 〈·, ·〉 which induces the norm ‖ · ‖ on R
3.

Vectors are distinguished by bold letters x =
(

x1 x2 x3

)⊤
, matrices by capitalization M.

Normalization to unit length is denoted by an additional hat: x̂ = π(x), where π : R3\{0} →
S2,x 7→ π(x) := x̂

‖x̂‖ , is the projection to the unit sphere S2. The tangent map of π can be

described by the Jacobian of its continuation on R
3: ∇π(x) = 1

‖x‖Px, where Px = I − x̂x̂⊤

denotes the orthogonal projection onto x̂⊥ in matrix form.
Figure 1 illustrates the basic setup. We assume a single-viewpoint camera with optical

center in origin o of the coordinate system. For simplicity, we will generally use a standard
pinhole camera model with focal length f = 1. The pinhole camera is modelled by the function
Π : Ω → ΩI , projecting each point x in a subset Ω ⊆ R

3 of the field of view1 onto some u in
the image plane x3 = 1, i.e. u = Π(x) = x

x3

.
Intersecting the ray emanating from the origin through an image point u ∈ ΩI with S,

we get the reflection point s(u) on S. We generally require that the surface map s is well-

1The field of view is the set of all points x ∈ R3, x3 > 0, which can be connected to the origin by a straight
line intersecting the image plane ΩI .
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defined on all of ΩI , i.e. the surface occupies the whole image. If S was diffuse, the physical
image intensity in u would be completely determined by the texture in s(u). But since S is
specular, the ray is reflected and advances until it hits the scene surface L in l(u). We denote
the reflected ray by r := s − l. We also assume that there are no multiple reflections and the
light map l : ΩI → L is defined on all of ΩI . We require S to be sufficiently smooth and Ω to
be a bounded domain with piecewise smooth boundary ∂Ω. Now, we can formulate the basic
problem in an abstract way:

Problem 1. Given the light map l(u), find a corresponding surface map s(u).

This means for each image point u in the distorted image, we must be able to estimate
the exact scene point l(u) without knowing S. In practice, this is realized with the help of
time-coded radiance patterns in the scene, see [Kam04] for a discussion. Here, we assume this
has already been accomplished.

The law of reflection connects measurement and surface: for s = s(u), l = l(u), and the
normal n̂ of S in s, we have

n̂(s) = −π(π(s − o) + π(s − l)) = −
ŝ + r̂

‖ŝ + r̂‖
. (2.1)

The normals are forced downward, i.e. 〈n̂, s〉 < 0. Thus, if we set

m̂(x) = −π(x̂ + π(x − l(Π(x)))), (2.2)

x ∈ Ω, we have a vector field m̂ restricting the normals of S: if s ∈ S, then

n̂(s) = m̂(s). (2.3)

If this condition holds for all s, the surface is said to satisfy the normal condition. This leads
to an equivalent formulation:

Problem 2. Given the normal field m̂, find a surface map s satisfying n̂(s) = m̂(s).

Despite its elegance, this way of viewing the problem has not been widely considered. Notable
exceptions are the works of Bonfort and Sturm [BS03] as well as Hicks and Perline [HP04],
who also provide a generalized formulation using so-called m-distributions.

The problem in its current form does not necessarily admit a unique solution. In [KD04] for
example, an adept parametrization transforms (2.3) into a total differential equation exhibiting
an infinite number of solutions if no suitable boundary conditions are given.

2.2 Optical flow

The objective of this paper is to incorporate optical flow measurements to overcome the
ambiguity addressed in the last section. Consider a scene surface containing a fixed point x

which is observed at image coordinates u(t) for t ∈ T with T a time interval. The optical
flow for u = u(t0) is then defined as the temporal derivative u̇(t0). Its prominent advantage
is that it can be estimated solely from the image sequence if the scene provides distinctive
texture and the temporal resolution is sufficiently high [BFB94]. Being a local property, the
optical flow effectively adds information to a single image, which allows to pointwise infer
scene information in a much easier way than with genuine stereo [Hor86, ZGB89].

Consider a fixed camera observing a dynamical scene, and let w(x) denote the velocity
vector for each scene point x at time t0. Note that this includes uniform Euclidean motion,
where

w(x) = ẋ(t0) = Ωx + v, (2.4)

and Ω = Ω(t0) is a skew-symmetric matrix s.th. x(t) = R(t)x + y(t), R(t) = eΩ(t) ∈ SO(3)
and v = ẏ(t0). However, this velocity field formulation allows far more complex and possibly
non-rigid motion, e.g. waves on a water surface. For a point s on a diffuse surface S, the

3



Figure 2: Specular optical flow. The reflection point s varies as the specular surface moves relative
to camera and diffuse scene.

optical flow is given by [Hor86]

u̇ =
d

dt
Π(s(t)) = ∇Π(s)ṡ

= ∇Π(s)w(s) =
1

s3





1 0 −u1

0 1 −u2

0 0 0



 w(s).
(2.5)

In the simple case of purely translational motion, i.e. Ω = 0, we have w(s) ≡ u and can easily
deduce s3 – and thus s – from known u, v, and u̇ (see [HZ03] for a survey). If S is specular,
the process is far more involved since u is now the projection of the reflection point s of a fixed
scene point l. Here, we will consider the case where the reflected scene L remains stationary,
i.e. camera and diffuse target are rigidly mounted on a sensor head which moves relatively
to the unknown specular object. Generally, s will move on the surface in time: one does not
always “see” the same surface point although the observed scene point does not change (see
Figure 2).

Specularities have been widely regarded as a source of error in diffuse surface reconstruc-
tion, with many authors proposing methods to detect and discard the respective flow vectors.
To take advantage of the extra information, Roth and Black [RB06] recently suggested a
model based on a first-order Taylor expansion of the path function introduced by Chen and
Arvo [CA00]. Their model requires a large distance between s and l, leaving the reflected
ray r in (2.1) approximately constant. For our setup, this assumption is too restrictive. We
propose a remedy in Section 4.2.

2.3 Level sets and differential geometry

The surfaces under concern are assumed to be regular for the rest of the paper, i.e. they can be
described by a set S ⊂ R

3 and an atlas of Ck-diffeomorphisms hs, k ≥ 1 , such that for every
point s ∈ S, there exists a neighborhood Ũ ⊂ R

3 of s with hs mapping Ũ ∩ S to an open set
U ⊂ R

2 [dC76]. Some inherent drawbacks of this representation, namely the possible need for
reparametrization and the strong dependence on the dimension of the underlying space, can
be circumvented by using an implicit – or level set – representation made popular by Osher
[OF02] and Sethian [Set05]. Here, we express S as the zero set of a function ϕ ∈ C2(V,R) s.th.
S ∩ V = ϕ−1({0}). The level set function ϕ defines a regular surface if ∇ϕ 6= 0 on ϕ−1({0}),
which we assume throughout.

While a regular surface locally allows such a representation (for any local graph represen-
tation f : U ⊂ R

2 → Ω, set ϕ(x, y, z) = f(x, y)− z), no global level set function ϕ ∈ C2(Ω,R)
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exists in general. The continuity of ϕ enforces orientability, which is why one only allows
regular surfaces of the form S = ∂W with some open W ⊂ R

3, s.th. ϕ < 0 in W and ϕ > 0
in Ω\W . We will assume S to satisfy the above requirements.

The following inner geometric quantities are needed frequently:

n̂ =
∇ϕ

‖∇ϕ‖
, K = −

1

‖∇ϕ‖
Pn̂∇

2ϕPn̂,

where n̂ is the normal in the direction of ϕ > 0 and K is the symmetric matrix defining the
second fundamental form satisfying Kn̂ = 0. By ∇2ϕ, we denote the Hessian of ϕ. For the
mean curvature κ, we get κ = −TrK (see [Jin03]).

The surface gradient DSf(s) of a function f : S → R is defined as the unique vector
y ∈ TsS with d

dτ
{f(x(τ))}|τ=0 = 〈y, d

dτ
x(τ)|τ=0〉 for all curves x ⊆ S with x(0) = s. In case

one has access to the gradient ∇f of a continuation of f on a neighborhood of s, we have
DSf(s) = Pn̂∇f(s).

Moving surfaces are naturally written as S(t) = ϕ−1[{0}, t], where ϕ ∈ C2(Ω × T,R), and
each ϕ[·, t] itself is a level set function. We will use brackets to distinguish these level set
evolutions from ordinary level set functions ϕ. For such an evolution, let ∇ϕ := ∂xϕ and
ϕ̇ := ∂tϕ.

Consider a differentiable curve s : T → Ω lying on the moving surface, i.e. ϕ[s(t), t] ≡ 0.
Derivation w.r.t. t results in

ϕ̇[s(t), t] = −∇ϕ[s(t), t]ṡ(t) = −〈ṡ(t), n̂[s(t), t]〉‖∇ϕ[s(t), t]‖.

This means that the way the surface evolves only depends on the normal velocity field

v := 〈ṡ, n̂〉 (2.6)

of the parametrization [SO05b]. By substituting v, we get the level set equation

ϕ̇ = −v‖∇ϕ‖. (2.7)

As an important example, consider the special level set function

ϕ(x) = el,x0
(x) := c(x0) − (‖x‖ + ‖x − l‖) (2.8)

with s, l ∈ R
3 and c = c(x0) := ‖x0‖ + ‖x0 − l‖. The zero set El,x0

of el,x0
consists of all

points x for which the sum of the distances to o and l is the same as for x0. In the two-
dimensional case, it coincides with an ellipse with focal points o and l. In three dimensions, a
prolate spheroid El,x0

is generated by rotating such an ellipse around its major axis through
o and l.

For x ∈ El,x0
, the normal computes as

n̂l,x0
(x) = π(∇el,x0

(x)) = −π (x̂ − π(x − l)) .

Comparing this to (2.1) confirms the fact that such a spheroid will reflect all rays emerging
from the origin into its second focal point l and vice versa. The law of reflection then reduces
to the fact that the surface normal n̂(s) for a point s ∈ S and the normal n̂l,s(s) of the
(unique) spheroid through s with foci o and l coincide. In the case that S is exactly shaped
like El,s in a neighborhood of s (and assuming there are no occlusions), the scene point l will
be visible in a neighborhood of the image point u = Π(s). This means we cannot generally
assume the injectivity of l−1 : L → ΩI , not even locally: features on L might be “infinitely”
magnified when observed indirectly through the mirror.

2.4 Stating the problem

We will now see how the extra information provided by the optical flow can be integrated into
the model to help finding the original surface. First, observe that solving (2.3) for S can be
expressed as minimizing the surface functional

J(S) :=
1

2

∫

S

‖n̂ − m̂‖2dσ,
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where dσ is a suitable surface measure. In level set notation, this can formally be written as

J(ϕ) =
1

2

∫

Ω

‖n̂ − m̂‖2‖∇ϕ‖δ(ϕ(x))dx,

where δ is the Dirac delta distribution. Our extra information shall be contained in a similar
functional H. While we will illustrate the procedure only for the optical flow case, H might
as well include any additional measurements, e.g. from range sensors or analysis of diffuse
surface parts. Here, we will use

H(S) =
1

2

∫

S

‖u̇ − u̇m‖dσ, (2.9)

where u̇ is the expected optical flow for the surface hypothesis S and u̇m(s) is the observed
flow field at image coordinates Π(s), interpolated from measurements. In practice, problems
may arise if optical flow data are only partially available, a case we will ignore for the scope
of this paper.

Traditionally (cf. [SAH04, KD04]), one would blend both functionals into a third one,
e.g. E(S) = αJ(S) + (1−α)H(S), and then minimize E. We will adopt a different viewpoint
inspired by [SO05a]: let R be the set of regular surfaces (or even level set surfaces if necessary),
and denote by Rm̂ ⊂ R the subset of all surfaces satisfying the normal condition, i.e. S ∈
Rm̂ ⇔ J(S) = 0. We may now solve the constrained minimization problem

S = argmin
S∈Rm̂

H(S).

This concept provides some benefits: Rm̂ has fewer degrees of freedom than R. In fact, it can
be shown that Rm̂ is a one-parameter family, parametrizeable by the intersection of S with
a ray through the origin. On the other hand, one can assume S ∈ Rm̂ for the construction of
H. This proves useful in the specular flow case, where one has to assume the law of reflection
holds in order to correctly calculate the flow vectors. Before we will see how to realize the
minimization process, we will derive an expression for the expected optical flow u̇.

3 Optical flow on specular surfaces

3.1 Calculating optical flow

We now solve the forward problem: computing the optical flow u̇ for a known surface S moving
according to the velocity field w. In Section 2.2, we saw that instead, we may calculate the
reflection point velocity ṡ like in (2.5). First, we need the following lemma to determine how
a given normal velocity relates to changes in the normal field.

Lemma 1. Let ϕ be a sufficiently differentiable level set evolution and s : T → R
3 a differ-

entiable curve on S(t) := ϕ−1[{0}, t], i.e. ϕ[s(t), t] ≡ 0. Then,

d

dt
{n̂[s(t), t]} = −DSv + dPn̂ṡn̂,

where DSv is the surface gradient of the normal velocity (2.6) and dPn̂ṡn̂ ∈ TsS the derivative

of n̂ in the direction of the projection Pn̂ṡ.

Proof. From the implicit representation, we get a natural extension of n̂ and v on a small
neighborhood of a point s(t0). Thus by the chain rule we may write

∂t{n̂[s(t), t]} = ∇n̂[s(t), t]ṡ(t) + ∂tn̂[s(t), t].

Decomposing ṡ orthogonally into ṡ = Pn̂ṡ + 〈ṡ, n̂〉n̂ = Pn̂ṡ + vn̂, we get (in short-hand
notation)

∂tn̂[s(t), t] = dPn̂ṡn̂ + (∇n̂)vn̂ + ∂tn̂. (3.1)
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By ∂tn̂ = ∇π∂t∇ϕ, changing the order of differentiation, and substituting ϕ̇ = −v‖∇ϕ‖ from
the level set equation (2.7), it follows that

∂tn̂ = ∂t{π(∇ϕ)} = ∇π∇ϕ̇ = ∇π∇{−v‖∇ϕ‖}.

By the product rule, ∇{v‖∇ϕ‖} = v∇‖∇ϕ‖ + ‖∇ϕ‖∇v. With ∇‖x‖ = x̂, it follows that

∇π∇{v‖∇ϕ‖} =
1

‖∇ϕ‖
Pn̂

(

v∇2ϕ
∇ϕ

‖∇ϕ‖
+ ‖∇ϕ‖∇v

)

.

Now, we use 1
‖∇ϕ‖Pn̂∇

2ϕ = ∇n̂, and thus

∂tn̂ = −(∇n̂)vn̂ − Pn̂∇v

which yields the assertion in view of (3.1).

The central result of this section is

Theorem 2. Let ϕ be a level set evolution and s a curve as in Lemma 1 which is additionally

a reflection point curve: all points on s satisfy the law of reflection (2.3) with respect to the

origin and a fixed l ∈ R
3. Then, ṡ solves the linear system

(n̂n̂⊤ + M − K)ṡ = (I + ∇m̂)(vn̂) +DSv.

Here, M = −∇m̂ = − 1
‖∇el,x‖Pn̂∇

2el,sPn̂ with el,s from Equation (2.8).

Proof. By definition, s satisfies two constraints:

1. s(t) ∈ S(t) for all t ∈ T and, by the law of reflection,

2. n̂[s(t), t] = m̂(s(t)).

As shown in Section 2.3, the first of the above properties immediately implies

〈ṡ, n̂〉 = v. (3.2)

Now by Lemma 1,
d

dt
{n̂(s(t), t)} = −DSv + dPn̂ṡn̂.

But the second constraint forces n̂(s(t), t) = m̂(s(t)), thus

−∇m̂ṡ = DSv − dPn̂ṡn̂.

As dPn̂ṡn̂ = −KPn̂ṡ = −Kṡ, we have

(−∇m̂ − K)ṡ = DSv.

Again, decomposing ṡ = Pn̂ṡ + n̂n̂⊤ṡ = Pn̂ṡ + vn̂, it follows that

(−∇m̂Pn̂ − K)ṡ = ∇m̂(vn̂) +DSv.

For M defined as above, we have −∇m̂Pn̂ = M, and thus

(M − K)ṡ = ∇m̂(vn̂) +DSv. (3.3)

Equations (3.2) and (3.3) form a linear system in ṡ. Moreover, since Im(M − K) ⊆ TsS

and ∇m̂(vn̂),DSv ∈ TsS, we may multiply (3.2) by n̂ and add both equations, thereby
transforming the system into the aggregate form

(n̂n̂⊤ + M − K)ṡ = (I + ∇m̂)(vn̂) +DSv. (3.4)

7



Assuming the matrix on the left side of (3.4) is invertible, Theorem 2 allows us to compute,
for each point s on the surface and the corresponding fixed scene point l, the velocity vector
ṡ of the reflection point on the surface. Projecting this into the image plane finally gives –
similar to (2.5) – the optical flow vector

u̇ =
1

〈s,e3〉
(I − ue⊤

3 )ṡ

with I the identity matrix and e3 the third standard basis vector. A striking consequence of
the theorem is that the optical flow is only influenced by surface properties up to second order.
This is in close analogy to a result of Savarese and Perona [SCP05] for a related problem.

Note that the optical flow computation only makes sense if one can presume that the law
of reflection holds. This is one of the reasons why our constrained minimization approach is
superior: we only need to evaluate flow vectors for surfaces S ∈ Rm̂, which by construction
of Rm̂ satisfy the law of reflection in every point.

Also note that our model allows arbitrary surface motion, as it depends only on the normal
velocity field. In practice, we may want to restrict ourselves to rigid body motion:

Corollary 3. Under the conditions of Theorem 2, let S move relatively to the camera according

to an external velocity field w as in Section 2.2. Then ṡ satisfies

(n̂n̂⊤ + M − K)(ṡ − w) = ∇m̂w + Pn̂(∇w)⊤n̂.

Proof. As the motion is externally controlled, we may consider the curve that a point x ∈ S(t0)
follows over time. Let c be such a curve, so c(t0) = x. The external velocity field then dictates
ċ(t0) = w(x). Since c tracks one fixed point on S, c is a surface curve, i.e. c(t) ∈ S(t). This
in turn forces the normal velocity in x to be v = 〈ċ(t0), n̂〉 = 〈w, n̂〉. Substituting this in the
result of Theorem 2, applying the product rule, and using M = −∇m̂Pm̂ yields the assertion.

In particular, for an Euclidean rigid body motion we have w = Ωx + v, so ∇w = Ω. Also
note that by assumption n̂ = m̂ on S, so any occurrences of n̂ may be replaced by the known
m̂. If the matrix (n̂n̂⊤ +M−K) is regular, ṡ is uniquely determined. By definition, we have
n̂ ∈ Ker(M − K), so this is the case iff Rank(M − K) = 2. If this rank condition is satisfied,
we will call s a flow regular point, otherwise flow singular.

For illustration, consider a spheroid El0,s with l0 := l(Π(s)) ∈ L as defined by (2.8).
Each point on E reflects l0 into the origin, meaning that the light map l : ΩI → L cannot
be inverted locally. When calculating optical flow, we are essentially tracking the projection
l−1(l0) of the diffuse scene feature at l0. This must fail if l is not at least locally invertible
in l0.

So it comes out naturally that the optical flow vector is not well-defined in points u = Π(s)
for surfaces that look like the spheroid El0,s in a neighborhood of s. This is a perfectly
reasonable constraint since such a surface would locally exhibit “infinite” magnification. But
the rank constraint is actually weaker: it also forbids reflection points s where the second
order properties of S and El0,s match in a single tangential direction y ∈ TsS. This accounts
for the fact that the image of l0 may split and merge, or even abruptly disappear from the
camera image. We conclude that flow singular points are not only a byproduct of our model
but have a real physical counterpart.

Figure 3 shows an exemplary optical flow for a stretched paraboloid rotating around the
principal axis of the sensor as well as the “raw” reflection point velocities ṡ. The result differs
drastically from its counterpart for diffuse surfaces, which is rotation symmetric and – in this
special case – even independent of the surface shape.

4 Reconstruction of specular surfaces

Having derived the intrinsic properties of real-world specular reflection, we shall now present
a numerical method to solve the constrained minimization problem. We will use a gradient
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Figure 3: (a) Exemplary vector field of reflection point motion ṡ for a paraboloid rotating around the
z axis and (b) corresponding optical flow field u̇.

descent method for the functional H carrying the “extra” information together with a gradient
projection step to force S ∈ Rm̂.

We face three problems: finding a starting point S ∈ Rm̂, the gradient ofH, and finally, the
subspace on which to project. We will look for a starting point by unconstrained minimization
of J as presented in the following section. For an outline of the basic concepts in abstract
form, refer to [SO05b]. The derivation of such gradient descents has also been extensively
discussed by the active contours community [ABFJB03, JBHBA06].

4.1 Unconstrained minimization

Consider the minimization problem S = argminS∈R J(S). In level set notation, J is of the
form

J(ϕ) =

∫

Ω

(1 − 〈m̂, n̂〉)‖∇ϕ‖δ(ϕ)dx. (4.1)

Note m̂ and n̂ are both normalized so that 1
2‖n̂ − m̂‖2 = 1 − 〈m̂, n̂〉. In order to minimize

J , we seek a critical point: find ϕ∗ s.th. dJ(ϕ∗)η := d
dt
{J(ϕ∗ + tη)}|t=0 = 0 for all test

functions η ∈ C∞(Ω). Formally differentiating J(ϕ∗ + tψ) w.r.t. t shows this is equivalent to

div(n̂∗ − m̂)δ(ϕ∗) = 0, (4.2)

where div is the divergence operator. As will be shown in the next section, this induces a
time-dependent process:

ϕ̇ = div(n̂ − m̂)‖∇ϕ‖. (4.3)

Any steady state solution of this equation satisfies (4.2) and is thus a stationary point of J .
Using the level set equation (2.7), one can formulate the result in terms of normal velocities:

v = −div(n̂ − m̂). (4.4)

This proves to be a very useful tool for deriving properties of evolving surfaces. Under the
premise that we can find a corresponding level set evolution ϕ, we may use the level set
representation as a tool to simplify calculations. Afterwards, results are converted back to
a representation-independent form – which must be possible if the surface evolution is well
defined, i.e. only depends on the zero set set of the level set function. In the following sections
we will take advantage of this approach.
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4.2 Deriving natural boundary conditions

In current vision related level set literature, it is common practice [GM04, SO05b] to postulate
that S is closed and fully contained in the computational domain Ω, i.e. S ∩ ∂Ω = ∅. The
surface is then represented by a discretization of the actual level set function, and standard
Neumann boundary conditions dϕ

dô
= 0 are applied (ô refers to the outside normal of ∂Ω).

Using these homogeneous boundary conditions is justified, provided that S has a sufficiently
large distance to ∂Ω.

However, this case requires normal measurements for every point in Ω – even outside the
actual surface – which in practice are rarely available. In our setup, the camera generally sees
only a small part of the surface, thus forcing S and ∂Ω to intersect. This renders the above
approach useless: the Neumann condition would then force 〈n̂, ô〉 = 0, which will generally be
violated by the sought-after surface. We shall therefore extend the proof of the normal speed
equation (4.4), as shown in [SO05b], by formally deriving the natural boundary condition.

Let E be the level set version of a surface error functional of the form

E(ϕ) =

∫

Ω

g(x, n̂)‖∇ϕ‖δ(ϕ)dx

with g : R3 ×S2 → R
+
0 integrable over S. For g(x, n̂) = 1

2‖n̂− m̂(x)‖, we have E(ϕ) = J(ϕ)
as in (4.1). We denote by gn̂ := DSn̂ the surface gradient of n̂.

Theorem 4. Let the level set surface ϕ be a critical point of the functional E. Then for

sufficiently smooth ∂Ω the natural boundary condition

〈gn̂ + gn̂, ô〉 = 0 (4.5)

on ϕ−1[{0}, t] ∩ ∂Ω follows. Generally, if ϕ fulfills this condition, we have the following

expression for the Gâteaux derivative dE(ϕ)η of E w.r.t. η:

dE(ϕ)η = −

∫

Ω

η div(gn̂ + gn̂)δ(ϕ)dx (4.6)

for all η ∈ C∞(Ω).

Proof. For a normal variation ϕε := ϕ+ εη, we have

dE(ϕ)η =
d

dε
E(ϕε)|ε=0 =

∫

Ω

d

dε
{g(x, n̂)‖∇ϕε‖δ(ϕε)}|ε=0dσ.

As shown in [SO05b], this leads to

dE(ϕ)η =

∫

Ω

〈∇η, gn̂ + gn̂〉δ(ϕ)dx +

∫

Ω

ηg‖∇ϕ‖δ′(ϕ)dx.

Applying Gauss’ theorem to the first integral yields

dE(ϕ)η =

∫

∂Ω

η〈gn̂ + gn̂, ô〉δ(ϕ)dσ −

∫

Ω

η div{(gn̂ + gn̂)δ(ϕ)}dx

+

∫

Ω

ηg‖∇ϕ‖δ′(ϕ)dx

=

∫

∂Ω

η〈gn̂ + gn̂, ô〉δ(ϕ)dσ −

∫

Ω

η div(gn̂ + gn̂)δ(ϕ)dx

−

∫

Ω

η〈gn̂ + gn̂,∇ϕ〉δ′(ϕ)dx +

∫

Ω

ηg‖∇ϕ‖δ′(ϕ)dx.

Observe that 〈gn̂,∇ϕ〉 = 〈gn̂, n̂〉‖∇ϕ‖ = 0, since the surface gradient gn̂ by definition lies in
the tangent plane of S. Also 〈n̂,∇ϕ〉 = ‖∇ϕ‖, so the remaining terms in the last line cancel
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each other leaving

dE(ϕ)η =

∫

∂Ω

η〈gn̂ + gn̂, ô〉δ(ϕ)dσ −

∫

Ω

η div(gn̂ + gn̂)δ(ϕ)dx.

Now, let ϕ be a critical point of E. Constraining the choice of η to functions vanishing
outside a compact domain, we see that the right side vanishes for all such η. Since this applies
to all η, it forces div(gn̂ + gn̂)δ(ϕ) ≡ 0. But this means the left integral must vanish for all
η by itself. Again, this applies to all η ∈ C∞(Ω), resulting in the natural boundary condition
〈gn̂ + gn̂, ô〉δ(ϕ) ≡ 0 on ∂Ω.

On the other hand, if ϕ satisfies this boundary restriction, we have

dE(ϕ)η = −

∫

Ω

η div(gn̂ + gn̂)δ(ϕ)dx.

The term div(gn̂ + gn̂) is the so-called shape gradient of E so in view of (4.4), our minimiza-
tion scheme is of steepest descent type. For a thorough introduction from this perspective,
see [DZ01, Bur03, CKPF05].

4.3 The space of admissible gradients

In the case of the specular flow error functional H from (2.9), we face two difficulties:

1. H contains derivatives of ϕ up to second order (cf. Theorem 2), while the above deriva-
tion only permits first order derivatives.

2. We must respect the normal condition, i.e. we may not leave Rm̂ during the time
advancement step.

Let us consider the first point: while it is possible to derive a gradient descent process
similar to (4.3), this requires computing surface derivatives of up to fourth order. Following
the common Lagrangian approach, the gradient must then be projected onto a – yet to be
determined – space Am̂. This space consists of all gradients v of surface evolutions through
the current surface that obey the normal condition.

We will instead project on a vector space Ãm̂ containing Am̂ that in practice turns out
to be one-dimensional. Am̂ is closed under scalar multiplication, as can be seen by scaling
the time parameter of the underlying surface evolution of v ∈ Am̂. So we may as well project
onto Ãm̂ whenever Am̂ 6= {0}, i.e. whenever noise in the measurements of normals is small
enough. The gradient projection then reduces to the computation of a directional derivative
of H, which can be numerically approximated, sparing the cumbersome calculation of the
complete gradient.

Proposition 5. Let ϕ : Ω×T → R be a sufficiently differentiable level set evolution respecting

the normal condition at each point in time, i.e. n̂[s, t] = m̂(s), t ∈ T , s ∈ S(t). Then for all

t ∈ T and s ∈ S(t), the following relationship holds:

DSv + (∇m̂)m̂v = 0. (4.7)

Here DSv denotes the surface gradient of v on S.

For a fixed point in time, let Ãm̂ consist of all v satisfying (4.7). The linear structure
confirms that Ãm̂ is a vector space. Forcing a Lipschitz property for the measured normals
m̂, we can make sure the solution of (4.7) is unique up to a scalar.

Proof of Proposition 5. For a sufficiently differentiable ϕ and t0 ∈ T , x0 ∈ S(t0), we can
locally find a curve s : T → R

3 on S with s(t0) = x0. This can be seen making the
ansatz s(t) = x + n̂(x0, t0)λ(t), λ(t0) = 0, and using an implicit function argument to find
λ ∈ C1(Tε,R) in a neighbourhood Tε := (t0 − ε, t0 + ε) of t0.
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From Lemma 1, we get DSv + d
dt
{n̂[s(t), t]} − dPn̂ṡn̂ = 0. Using the normal condition

n̂[s(t), t] = m̂(s(t)), it follows that

DSv + (∇m̂)ṡ − dPn̂ṡm̂ = 0.

Decompose s orthogonally, then (∇m̂)ṡ = dPn̂ṡm̂ + dn̂n̂⊤ṡm̂ and

DSv + dn̂n̂⊤ṡm̂ = 0.

Substituting dn̂n̂⊤ṡm̂ = (∇m̂)n̂n̂⊤ṡ = (∇m̂)m̂m̂⊤m̂v = (∇m̂)m̂v yields the assertion.

4.4 The minimization algorithm

Let us now outline the complete gradient descent procedure for solving the constrained mini-
mization problem for general H.

1. Choose a start value S(t0 = 0) for the surface iteration.

2. Advance S in time according to (4.4) until J(S(t)) < εn.

3. While H(S(t)) > εH , repeat:

(a) For S(t), find a basis vector b of the discrete version of Ãm̂.

(b) Numerically, approximate the directional derivative dH(t)b. The gradient of H
projected onto Ãm̂ is then ṽ = b{dH(S(t))b}.

(c) Advance t→ t+ δt and S(t) → S(t+ δt) according to the normal speed given by ṽ.

Depending on the specific method used, the time discretization step may cause an increase in
the normal error J during phase 3. In our prototype, we use a simple forward Euler step with
some additional repetitions of step 2 if the normal error exceeds a certain upper bound. For
more implementation details, see [Lel06].

Note that the formulation works for any H, not only for the optical flow case. Also note
that though the derivation of the proposed method is based on the level set calculus, we are free
to use any other representation for the implementation. As an example, we shall briefly discuss
the case of an explicit parametrization in two dimensions. Here we have f : X × T → R

+

for an interval X = [xl, xr] and Ω = X × R
+. The surface is then simply the graph of f ,

S(t) = {(x, f [x, t])⊤ | x ∈ X}. Some important normal related properties are

n̂ =
1

√

(f ′)2 + 1

(

f ′

−1

)

, ∇n̂ =
1

[(f ′)2 + 1]
3

2

(

f ′′ 0
f ′f ′′ 0

)

, div n̂ =
f ′′

[(f ′)2 + 1]
3

2

.

Consider a curve s on S, i.e. s(t) = (x(t), f [x(t), t])⊤. By v = 〈ṡ, n̂〉, we get

v =
1

√

(f ′)2 + 1

〈(

ẋ

f ′ẋ+ ḟ

)

,

(

f ′

−1

)〉

=
−ḟ

√

(f ′)2 + 1
.

The normal velocity field v translates into the temporal derivative of f by ḟ = −v
√

f ′2 + 1,
in direct analogy to the level set equation ϕ̇ = −v‖∇ϕ‖:

〈

1
√

f ′2 + 1

(

f ′

−1

)

− m̂,

(

−1
0

)

〉

= 0,

where m̂ = (m̂1, m̂2)
T . This scalar equation is equivalent to

f ′ = m̂1

√

f ′2 + 1. (4.8)

Assuming that the normal field m̂ is compatible with the surface model in the sense that
through every point x, one can actually find a surface in this parametrization s.th. m̂(x) =
n̂(x), the case m̂2 = 0 can be excluded. We finally obtain

f ′(xl) =
m̂1(xl)

|m̂2(xl)|
.
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Figure 4: (a) The space Rm̂ visualized by a set of surfaces satisfying the normal condition for a
curved surface (dashed). Here, ΩI is the z = 1 plane, Ω = (−10, 10) × R

+, and the scene L is the
z = 0 plane. (b) Reconstruction process for a curved surface starting with f0

≡ 16. Curves represent
snapshots of fm every 5 steps for a total of 500 iterations. The normal adjustment takes place in the
first few iterations at the top of the figure. The constrained minimization (black) converges to the
correct solution (dashed).

as natural boundary condition. The same result applies to the right boundary. Note that,
in this special case, this is equivalent to forcing n̂ = m̂ on S ∩ ∂Ω, i.e. on the border the
minimizing surface normals coincide exactly with those of the measured normal field.

5 Experimental results

To verify the feasibility of the presented minimization process, we created a MATLAB im-
plementation of the algorithm. For the evaluation of our method, we used the above explicit
parametrization for two-dimensional Ω combined with a simple finite difference scheme and for-
ward Euler step method for solving the PDE. At them-th iteration we have fm = (fm

1 , . . . , f
m
N )

and ḟm = (ḟm
1 , . . . , ḟ

m
N ). Using central differences for ḟm, the discrete equivalent of the space

Ãm̂ is the kernel of a matrix of the form

A =











a0,1 a0,2

a1,1 a1,2

. . .
. . .

aN−1,1 aN−1,2











∈ R
(2N−2)×N ,

where each ai,j represents an R
2 vector. Looking at the defining equation (4.7), we expect

rows 2k and 2k + 1 to constitute one scalar equation thus limiting the rank of A to N − 1.
In this special two-dimensional case, one could actually parameterize v by arc length of the
surface curve S(t). This transforms (4.7) into a homogenous linear ODE for v, so all solutions
are scalar multiples of an arbitrary non-zero solution v0. Thus, the kernel of A should be
one-dimensional, which could be confirmed in all test cases. This supports the assumption
about the simple structure of Rm̂. Figure 4(a) shows a visualization of Rm̂ for a sample
curved surface. This surface is common for all following illustrations.

In order to obtain good data for the normal field, the discrete simulation values of the light
map l are interpolated using cubic B-splines. For the optical flow data, we use a piecewise
linear interpolation, which simplifies the exclusion of singular points. To estimate the error,
we recorded the values of the error functionals J and H. Figures 4 and 5 show the steps taken
as well as the error evolution for the reconstruction of a sample surface. As can be seen, the
surface converges within expectations for the simple discretization.
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Figure 5: Error progression for (a) normal and (b) specular flow error functionals J and H, respec-
tively.
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Figure 6: The (a) logarithmic and (b) linear specular flow error functional evaluated for several
surfaces, all obeying the normal constraint, see also Figure 4. The minimum uniquely identifies the
desired surface reconstruction.

Notwithstandig these encouraging results, one might ask if the optical flow is actually a
good candidate to select a unique solution from Rm̂. To investigate this, we evaluated the
optical flow functional H for a number of solution candidates in Rm̂ Figure 6. While there
are some – possibly discretization caused – local minima, the specular flow error exhibits a
distinct global minimum at the reference surface.

Extending the method to three dimensions is straightforward. Figure 7 shows the result
of a simulation for a curved three-dimensional surface. The corresponding error evolution is
shown in Figure 8.

6 Conclusion

Based on the theory of level set evolutions, we contributed a very general model for describing
optical flow fields that originate from the imaging of a scene over a time-variant specular
object. We could additionally derive necessary and sufficient conditions for these modelling
equations to be invertible.

A novel view of the reconstruction problem was put forward henceforth: light map mea-
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Figure 7: Steps during the reconstruction of a two-dimensional curved surface (dark), starting at
f0

≡ 20 (light). At iteration 236, the normal error has become small enough to start the constrained
gradient descent. The image domain ΩI lies in the z = 1 plane, Ω = (−10, 10)× (−10, 10)×R

+, and
the scene L is the z = 0 plane.
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Figure 8: Error evolution for (a) normal and (b) optical flow error functionals J and H. The normal
error threshold εn is marked with a gray line.
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surements were treated as a constraint for the minimization of an additional functional which
– in our case – represented the optical flow error. This could then be solved by finding the
steady-state solution of a partial differential equation under the normal constraint. To cope
with partial measurements, a way of deriving natural boundary conditions was presented. To
solve the PDE, a gradient projection type algorithm was proposed, which made it necessary
to have a closer look at the space of admissible gradients. Finally, the results of a refer-
ence implementation were presented, suggesting good convergence. A side experiment helped
to justify the choice of an optical flow-based method to pinpoint the unique solution to the
reconstruction problem.

In the future, more precise statements about the structure of the candidate solution space
should be possible. Adopting a more sophisticated integration process will certainly improve
accuracy as well as convergence speed. Finally, an answer to the question of well-posedness
completed with necessary and sufficient preconditions has yet to be found.
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