Variational problems with finite and infinite label spaces

Jan Lellmann

Cambridge Image Analysis
Department for Applied Mathematics and Theoretical Physics
University of Cambridge

F. Becker, C. Schnörr (U Heidelberg)
E. Strekalovskiy, S. Koetter, D. Cremers (TU Munich)
V. Corona, C. Schönlieb (U Cambridge)
J. Acosta-Cabronero, P. Nestor (DZNE Magdeburg)

BMC/BAMC, March 2015
Variational problems
Variational problems
Variational problems

The problem

Given data f, find the image information u that solves

$$f = T(u) + n,$$

where T models the relation between u and f, and n is noise: Minimise

$$\min_{u: \Omega \to Y} \left\{ D(T(u); f) + J(u) \right\}$$

data-/fidelity term, compatibility with measurements f

regulariser, prior knowledge (specific to problem)
Finite label spaces
Labelling problems

- In many interesting problems the range is discrete: A discrete decision is required in every $x \in \Omega$.

with: V. Corona, C. Schönlieb, J. Acosta-Cabronero, P. Nestor/DZNE Magdeburg
Labelling problems

Variational formulation:

\[
\min_{u: \Omega \rightarrow \{1, \ldots, L\}} \int_{\Omega} s(u(x), x) dx + J(u)
\]

Local data term + regulariser

Combinatorial/geometrical constraints → nonconvex!
Relaxation

- Replace the function $u : \Omega \to Y$ by the map $u' : \Omega \to \mathcal{M}(Y)$ from Ω into the set of **Dirac/point measures** on Y (vector space!):

 $$u(x) = y \iff u'(x) = \delta_y.$$

- Relax to the set of all maps $u' : \Omega \to \mathcal{P}(Y)$ into the set of **probability measures** on Y – always convex!

Relaxation – finite labels

- **Finite case** $Y = \{1, \ldots, L\}$: [Lie et al. 06, Zach et al. 08, Lellmann et al. 09, Pock et al. 09]

 $$y = \{1, \ldots, L\}$$

- Probability measures parametrised by unit simplex in \mathbb{R}^L:

 $$\mathbb{P}(Y) := \{x \in \mathbb{R}^L | x \geq 0, \sum x_i = 1\},$$

 $$\min_{u' \in BV(\Omega, \mathbb{P}(Y))} f(u'), \quad f(u') := \int_\Omega \langle u'(x), s(x) \rangle dx + J(u')$$

- **Convex** problem. Question: How to formulate/extend regulariser?
Relaxation – regulariser

- **Length-based regularisation**: Boundary length weighted by interaction potential (metric) \(d(i, j)\) depending on the labels:

- \(J(u)\) implicitly defined by (local) **convex envelope**:

\[
J(u) := \sup_{v \in \mathcal{D}} \int_{\Omega} \langle u', \text{Div} \, v \rangle \, dx = \int_{\Omega} \sigma_{\mathcal{D}_{\text{loc}}}(Du'), \\
\Psi(Du'),
\]

\[
\mathcal{D} := \{ v \in (C^\infty_c)^{d\times L} | v(x) \in \mathcal{D}_{\text{loc}} \quad \forall x \in \Omega \}, \\
\mathcal{D}_{\text{loc}} := \{ (v^1, \ldots, v^L) \in \mathbb{R}^{d\times L} | \| v^i - v^j \| \leq d(i, j) \quad \forall i, j \}.
\]

- Overall **convex, non-smooth** problem
Example
Infinite label spaces
Manifold-valued problems

- Interferometric data (InSAR) contains only the phase \((d \mod 2\pi)\) of the distance:
The range of the data u is constrained to a (Riemannian) manifold \mathcal{M}. Generalised Rudin-Osher-Fatemi:

$$\min_{u: \Omega \to \mathcal{M}} \int_{\Omega} d_{\mathcal{M}}(u(x), f(x))^2 \, dx + J(u),$$

$$\approx \int_{\Omega} \|Du\| \, dx$$

Total Variation (TV)-based: $[\text{Giaquinta, Mucci}]$

$$J(u) = TV_{\mathcal{M}}(u) = \int_{\Omega \setminus S_u} |\nabla u| \, dx + \int_{S_u} d_{\mathcal{M}}(u^-, u^+) \, d\mathcal{H}^{m-1} + J_C(u).$$

- Nonconvex due to the constraints!
- Nonconvex optimisation on manifolds:
 - $[\text{Absil, Mahony, Sepulchre’07 – smooth}]$
 - $[\text{WeinmannDemartStorath14, Bergman et al.’14 – nonsmooth}]$
Manifolds – approach

Again $u'(x)$ is a probability measure on \mathcal{M}:

$$
\min_{u':\Omega \to \mathcal{P}(\mathcal{M})} \sup_{p: \Omega \times \mathcal{M} \to \mathbb{R}^m} \int_{\Omega} \langle u', s \rangle \, dx + \lambda \int_{\Omega} \langle u', \text{Div} \, p \rangle \, dx
$$

s.t. $\|p(x, z_1) - p(x, z_2)\|_2 \leq d_M(z_1, z_2), \forall z_1, z_2 \in \mathcal{M}, \forall x \in \Omega$

Replace Lipschitz constraint by gradient-based formulation:

$$
\ldots \text{s.t. } \|D_z p(x, \cdot)\|_\sigma \leq 1, \quad \forall z \in \mathcal{M}, \forall x \in \Omega,
$$

$\| \cdot \|_\sigma$ spectral norm.

Convex, nonsmooth, uses manifold structure.
Generalised Rudin-Osher-Fatemi

- $L^2 - TV$ (Rudin-Osher-Fatemi)

$$\min_{u: \Omega \rightarrow \mathcal{M}} D(u) + \lambda TV_{\mathcal{M}}(u)$$

- properties similar to scalar case – contrast loss, jump preservation, …
Application – surface normals
Application – orientations in SO(3)
General convex regularisers

- General convex regularization:

\[
\min_{u: \Omega \rightarrow \mathcal{M}} D(u) + \int_{\Omega \setminus S_u} h(x, \nabla u) \, dx + \lambda \int_{S_u} \min\{\gamma, d_{\mathcal{M}}(u^{-}, u^{+})\} \, d\mathcal{H}^{m-1}.
\]

- Approximation: [cf. StrekalovskiyChambolleCremers2012]

\[
\min_{u': \Omega \rightarrow P(\mathcal{M})} \max_{p: \Omega \times \mathcal{M} \rightarrow \mathbb{R}^m, q: \Omega \times \mathcal{M} \rightarrow \mathbb{R}} \int_{\Omega} \langle u', s \rangle \, dx + \lambda \int_{\Omega} \langle u', \text{Div} \, p - q \rangle \, dx
\]

s.t. \(\|p(x, z_1) - p(x, z_2)\|_2 \leq d_{\mathcal{M}}(z_1, z_2), \forall z_1, z_2 \in \mathcal{M}, \forall x \in \Omega,\)

\(q(x, z) \geq h^*(x, D_z p(x, z)), \forall z \in \mathcal{M}, \forall x \in \Omega,\)
General convex regularisers

- Approximation of Mumford-Shah model on manifolds:

\[
\min_{u: \Omega \to M} D(u) + \lambda \int_{\Omega \setminus S_u} \| \nabla u(x) \|^2 dx + \gamma \mathcal{H}^{m-1}(S_u)
\]
Bregman iteration [Osher, Burger, Goldfarb, Xu, Yin’05] – “convexity splitting”

\[
\min_u D(u) + 0 = \min_u D(u) + \underbrace{J(u) - J(u)}_{\text{convex concave}}
\]

- **Linearise** the concave part:

\[
u^{k+1} = \arg\min_u D(u) + J(u) - (J(u^k) + \langle v^k, u - u^k \rangle), \quad v^k \in \partial J(u^k)
\]

- On scalar data, gradually introduces details and converges to the input → stop if suitable solution found
 - scalar case: \(u(x) \) are real values
 - here: \(u(x) \) are probability distributions
Conclusion

- **Finite label spaces – labelling/segmentation**
 - for *labelling* problems
 - convex relaxation in the function space

- **Infinite label spaces – manifolds**
 - for problems with values in $\mathbb{R}^n, S^n, SO(3), \ldots$
 - also for more general convex regularisers
 - similar properties as in real-valued case: contrast loss, jump preservation, Bregman, \ldots
 - source code available
Variational problems with finite and infinite label spaces

Jan Lellmann

Cambridge Image Analysis
Department for Applied Mathematics and Theoretical Physics
University of Cambridge

F. Becker, C. Schnörr (U Heidelberg)
E. Strekalovskiy, S. Koetter, D. Cremers (TU Munich)
V. Corona, C. Schönlieb (U Cambridge)
J. Acosta-Cabronero, P. Nestor (DZNE Magdeburg)

BMC/BAMC, March 2015
Nonconvex data terms

- *negative L^2–TV (nonconvex)*

\[
\min_{u: \Omega \rightarrow \mathcal{M}} -D(u) + \lambda \text{TV}_\mathcal{M}(u)
\]
Applications – optical flow