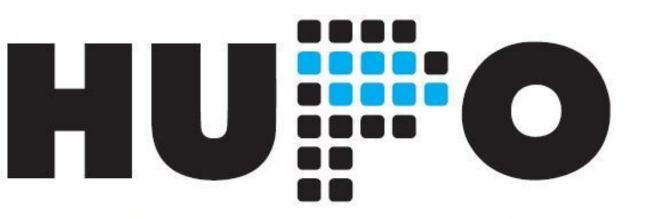
Deep learning for MALDI-MSI: towards a common framework for transferable tissue diagnostics

Patrick M. Jensen^{1,2}, Jan Lellmann², Herbert Thiele³, Pia Hönscheid^{4,5,6}, Christian Sperling^{4,5}, Gustavo Baretton^{4,5,6}, Oliver Klein⁷, Carsten Tschöpe⁸, Karin Klingel⁹

¹Department of Applied Mathematics and Computer Science, Lyngby, Denmark

- ²Institute of Mathematics and Image Computing, Lübeck, Germany
- ³Fraunhofer Institute for Digital Medicine MEVIS, Lübeck, Germany
- ⁴Institute of Pathology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- ⁵National Center for Tumor Diseases, Dresden, Germany,
- ⁶German Cancer Consortium, Dresden, Germany
- ⁷BIH Center for Regenerative Therapies, Berlin, Germany
- ⁸Department of Cardiology, Berlin Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany ⁹Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany


Summary

clinics

This work presents a deep learning pipeline for MALDI MSI analysis of human tissue samples, focusing on spectrum classification.

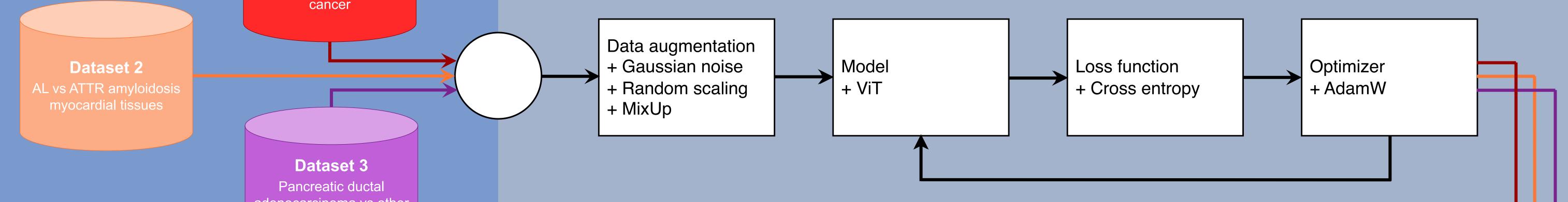
Datasets

We apply baseline removal, normalization, and downsampling to 0.2-0.3 Da bins. No peak picking or other reduction was applied.

HUMAN PROTEOME ORGANIZATION

ID: P-II-0464

- We evaluate on three MALDI datasets from different clinical **sources**. Task: classify the spectra from different tissue types.
- Based on 3-fold cross validation, we report test accuracy, \bullet balanced accuracy and F1-score computed on a per-spectrum and per-tissue sample basis.
- Without changing hyperparameters, we achieve promising results on all datasets. Our pipeline is open source, see QR code. We hope it can serve as a starting point for future research.

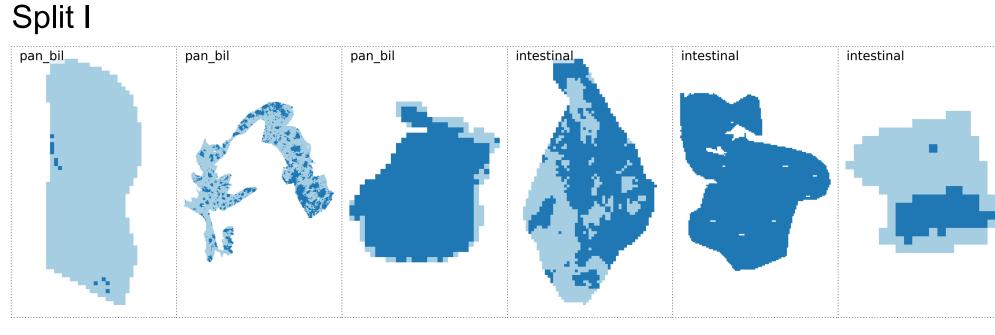

Dataset 1: Pancreatobiliary vs. intestinal types of ampullary cancer. (2 classes, 14 tissue samples, 171241 spectra, TU Dresden). **Dataset 2:** Myocardial tissues with ATTR vs. AL amyloidosis. (2 classes, 69 tissue samples, 141864 spectra, Charité Berlin). **Dataset 3:** Ovarian clear cell carcinoma (OCC), borderline tumors (BOT), high-grade serous ovarian cancer (HGSC) and low-grade serous ovarian cancer (LGSC).

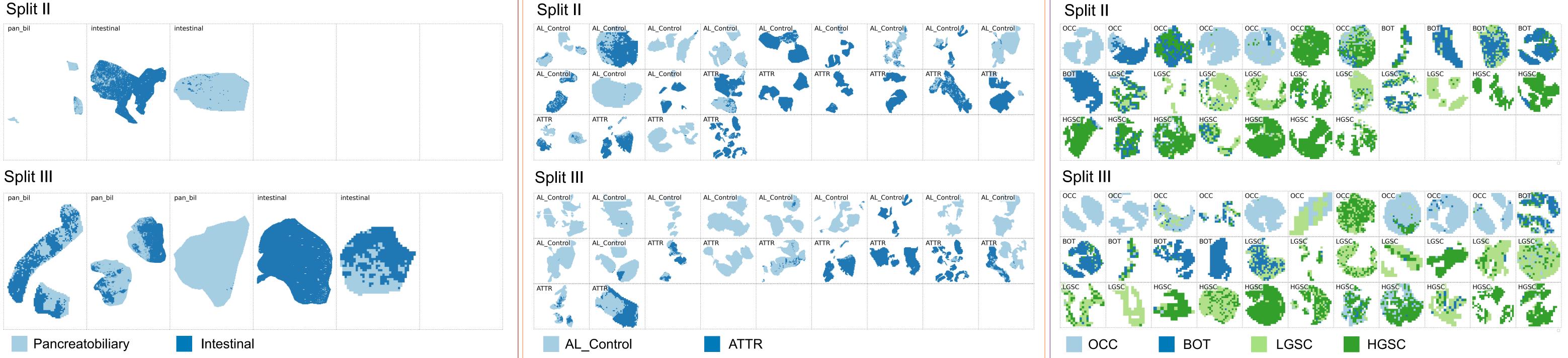
(4 classes, 105 tissue samples, 23004 spectra, Charité Berlin).

Different datasets from different

Same deep learning pipeline

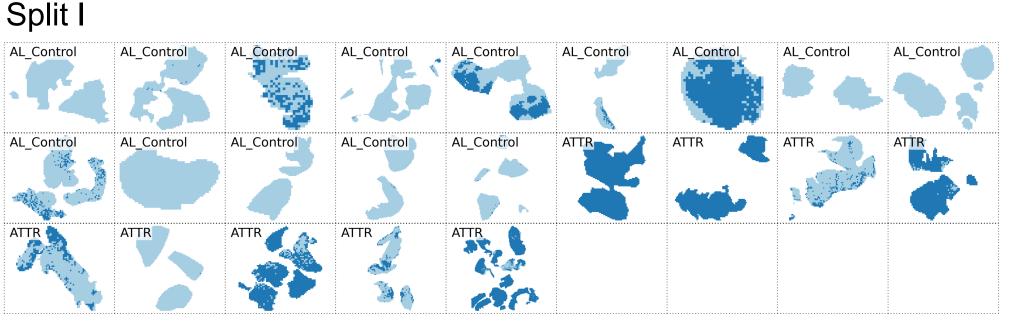
A 1D Visual Transformer (ViT) is trained using cross-entropy loss and the AdamW optimizer, with Gaussian noise, intensity scaling, and mixup as data augmentation (see below). For all tests, we keep all training hyperparameters unchanged.

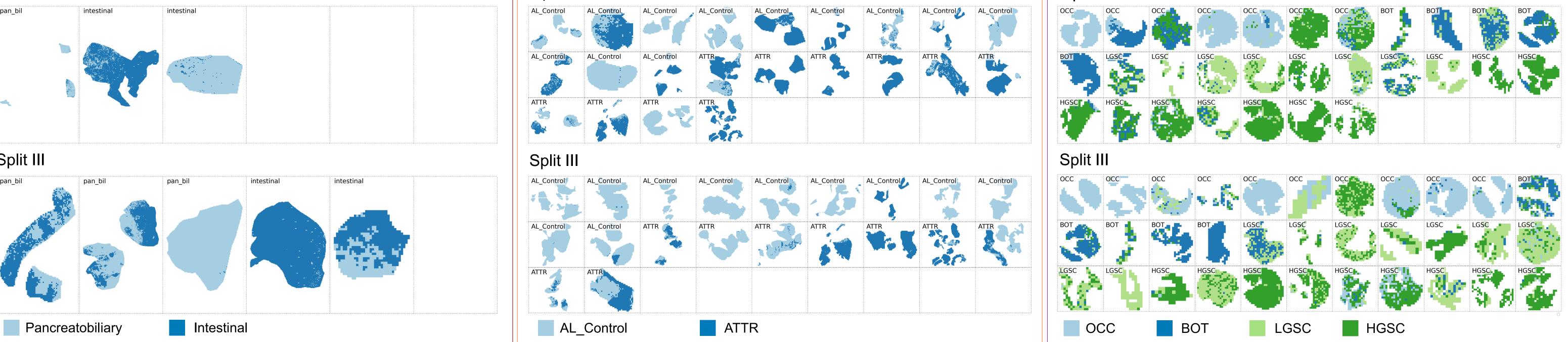

Dataset 1


Pancreatobiliary vs

intestinal type ampullary

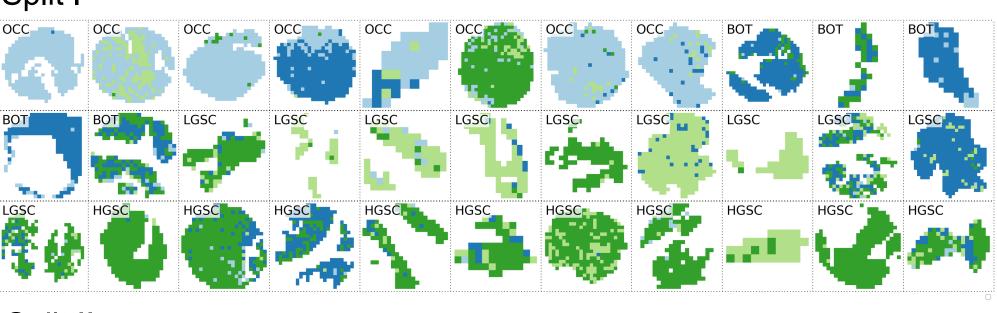
Dataset 1 test set results


	Acc.			B. Acc.	F	F1-score	
	Spectra	Sample	Spectra	Sample	Spectra	Sample	
Split I	0.92	0.67	0.92	0.67	0.92	0.67	
Split II	0.72	0.67	0.83	0.75	0.81	0.67	
Split III	0.72	0.80	0.81	0.83	0.74	0.80	
Mean	0.79	0.71	0.85	0.75	0.82	0.71	



Dataset 2 test set results

		Acc.		B. Acc.	F1-score	
	Spectra	Sample	Spectra	Sample	Spectra	Sample
Split I	0.78	0.78	0.77	0.74	0.77	0.77
Split II	0.70	0.64	0.71	0.65	0.70	0.63
Split III	0.73	0.75	0.72	0.73	0.72	0.74
Mean	0.74	0.72	0.73	0.71	0.73	0.71



Dataset 3 test set results

	Acc.			B. Acc.	F	F1-score	
	Spectra	Sample	Spectra	Sample	Spectra	Sample	
Split I	0.63	0.70	0.64	0.72	0.64	0.70	
Split II	0.66	0.69	0.68	0.69	0.66	0.68	
Split III	0.71	0.76	0.71	0.79	0.71	0.76	
Mean	0.67	0.72	0.68	0.73	0.67	0.71	

Split I

